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Abstract. Symmetry adapted expressions for the magnetic and quadripolar nuclear spinlattice
relaxation time T in HCP metals are derived from Dirac theory, They are applied systematically
to 3d, 4d and 5d metals (Sc, Ti, Y, Zr, Tc, Lue, Hf, Re, Os) on the basis of semi-relativistic
and full-relativistic self-consistent LMTO calculations. General trends and relativistic effects are
discussed. The relaxation rate 7‘1‘l in Zr is overestimated theoretically by a factor of two, as
already found by Asada and Terakura. There is strotig evidence that the reason for this error lies
in spin—orbit splitting. Shifts of 3 mRy in the band position explain the experimental ZI"]‘l in Zr.
The Fermi surface of Ti is discussed in connection with the theoretical relaxation rate. Some
quantities that are nseful for the evalvation of measurements tike hyperfine coupling constants
and ratios between magnetic and quadrupole relaxation rates are presented, Comparison with
the experimental data shows that the quadrupole scattering is well reproduced by the theory.

1. Yntroduction

In this paper, expressions for magnetic and quadrupole nuclear spin-lattice relaxation by
conduction electrons in hexagonal close packed (HCP) metals are derived from Dirac theory.
The resulting relations are applied to 3d, 4d and 5d transition metals on the basis of semi-
and full-relativistic linear muffin tin orbital (RLMTO) band structure calculations.

After the derivation of a concept capable of describing the relaxation process
(Redfield 1955, Hebel and Slichter 1959) and the clarification of the main driving
mechanisms (Korringa 1950, Obata 1963, 1964, Yafet and Jaccarino 1964 and Gaspari
et al 1964), namely Fermi contact, dipole, orbital, electric quadrupole interaction and core
polarization, a lot of material-specific estimations of the nuclear spin-lattice relaxation
rate ’I'l"1 were made in connection with experiments. Basic inputs were empirical and/or
measured electronic structure quantities and atomic data such as hyperfine coupling constanis
and nuclear moments. One aim was to subdivide the experimental results, which were
increasingly detailed with regard to the electronic sources, with the help of estimated atomic
constants, s—d-band models and quantities deduced from other experiments. With growing
complexity of the electronic structure, this method becomes less reliable and a microscopic
treatment is required.

On the basis of fast and accurate band structure calculation methods, which were
developed in the 1970s, the extensive experimental material was worked on by many
theoreticians in the 1980s. In a series of papers (Asada et al 1981, Asada and Terakura
1982, 1983) the nuclear spin-lattice relaxation in pure cubic and HCP metals was examined
carefully. The authors of these papers completed the formulae of Narath (1967), who
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elaborated a part of the magnetic relaxation rate in HCP crystals; they studied 3d and 4d
metals (Asada and Terakura 1982, to be referred to hereafter as I) up to a relativistic
computation of the contact contribution (Asada and Terakura 1983, to be referred to hereafter
as II}. A little later John et al (1983) presented the complete relativistic formulae for the
magnetic and electric quadrupole relaxation rate in cubic metals and applied them to heavier
transition metals.

The present work continues the outlined course of investigations for HCP metals, It
includes the same metals as I (Sc, Ti, Y, Zr, Tc) and additionally the 4f metal Lu and the
5d metals Hf, Re and Os. Owing to the sensitive dependence of the electronic properties
in the nuclear vicinity, relativistic effects influencing T,‘1 are already perceptible in lighter
metals. This is why we prefer a Dirac description.

A systematic correction is the relativistic contraction of the electronic states near the
nuclei, which is most important for the s states (see II). Furthermore, very small band shifts
and splittings due to the spin—orbit interaction may change the relaxation rate. These effects
on the band structure usually play a minor role for Z < 36 (Akai ef g/ 1990), but here we
show that very subtle effects on the band structure may have some influence on Tj in Ti,
and alter 7, appreciably in Zr, A third consequence of the Dirac treatment is the further
reduction of the symmetry by spin—orbit coupling, apart from its band effects. In the local
HCP point symmetry group Dy, s, p and d states belong to four irreducible representations.
Spin—orbit coupled lattice harmonics are invariant under operations of the double-point
symmetry group (DPSG) D, which has only three irreducible extra representations (Pyykkd
and Toivenen 1983). So more different angular momenta ! appear in the same representation
I'" and interfere in non-diagonal hyperfine scattering terms

{Cyir (D Hul Ty 'k (DHT y a2 WD g | Ty i3 ()" T#1.

A further motivation for the studies was the hope of finding reasons for some discrepancies
between theory and experiment in I Beyond that, the extension to 5d metals allows
systematic trend investigations and a study of the quadrupole scattering.

In order to examine these points more closely and to improve reliability we thought
it advantageous to carry out two series of calculations that include relativistic corrections
on different levels, We focus particularly on the question of how relativistic effects and
characteristic features of the electronic structure affect 7).

2. Spip-lattice relaxation rate

In this section, expressions for the practical calculation of the nuclear spin-lattice relaxation
by relativistic conduction electrons in HCP metals are introduced. A derivation of these
expressions was given by Markendorf (1991). We do not present relativistic formulae for
the core polarization, becaunse in this work we use the values from I

The spin-lattice relaxation in metals is driven by the scattering of electrons at the
nucleus. In a 7 process the hyperfine interaction causes a flip from the nuclear Zeeman
state [m) to m') and a simultaneous transition between the Bloch states |k} and [£7).

The relaxation rate 7, in the spin temperature approximation (Slichter 1990) is

-1
Tl; = % Z Wm,m'(Em - Em')z(z Ei) (1)

m '

27 ;
Wt = — Y |m'k| Huglmk) ks T8 (Ex — Es)8(Ep — Ex). (2)
k&
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Table 1. Basis functions for the representations of the prsG Dy, Q,‘: p are the spin—orbit

functions,
Extra representation Row of I" Basis functions X.{'y
r ¥
=0 =1 I=2
Ty 1 Q1172 $22,12 R2_3.102
2 Q-2 —22.-1p2 Q312
Ty 1 Q1.1 22,172 Qo350
2 Qt-1/2 —R-3-12 Q35
Ty 1 2-2,-3/2 22302 Q_33p
2 2332 Q3 R332

In equation (1) E, are the nuclear Zeeman energies and W, .+ is the total transition
probability between the Zeeman levels E,, and E,, with Er being the Fermi energy.
These transitions are induced by the hyperfine interactions

th == Hmag + Hq- (3)

The Dirac hyperfine operator
ectuohnI(oc x 7)
4
4arr? @

describes the magnetic interaction of the electrons with the nuclear dipole moment. It
corresponds in the non-relativistic case to the Fermi contact, dipole and orbital interaction.
Here 7 is the pseudoscalar matrix, yy is the nuclear gyromagnetic ratio, I and & are the
nuclear and the electron spin operator respectively, e is the electron charge and # the unit
vector r/r in real space; Hy is the quadrupole interaction

Hmag ==

1
=z Z Qijqij ©)
0
05 = —22 S 3 + 4ty - 3y 1) ®)
ij 1(21___1) ~ PASRY) f el ¥
oy = e 3xix; — r235J N

4reg rs

with the quadrupole tensor @y, the quadrupole moment Q and the electronic field gradient
operators gy; with the electron coordinates x;. The transition probabilities (2), (4)<(7) have
to be evaluated with the symmetrized Dirac four-component spinors. The relativistic basis
functions x for the representations of the DPSG D3y are presented in table 1 (Pyykké and

Toivonen 1983) According to the interactions 7;”' has two parts:

(51‘[) = (Tl])mg * (Til)q ®

In the resulting formulae the hyperfine coupling constants occur, which we defined as

2mge
Her = #B&_a"f @efe + g fi)dr (9)

o 3Q21+3) 12 prws &
Jew = (101‘2(21 -~ 1)) fo (8vge + fx'fx)-; a0
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and the quantities

Mo =N (ER) = Y _ ¢t (K)crye (R)S(Ey — Ep) (11)
k

which are in the diagonal case x = «' the partial density of states (DOS) of « orbitals of
the representation I' and in the non-diagonal case the so-called mixed (or off-diagonal)
DOS. The hyperfine couplings H,, are related to Hp and H!, in I via equations (14)-(16).
The quantities cry, are expansion coefficients of the Bloch states and g, and f, are the
radial parts of the major and the minor comporent in the Dirac spinor at the Fermi energy.
The integrals reach out to the Wigner—Seitz radius rws. The explicit formulae for the two
contributions in (8) are given in the appendix.

The magnetic and quadrupole operators (4), (6), (7) do not interfere in the scattering
rates because their tensor components transform with respect to rotation matrices of the first
and the second rank, respectively. Our relaxation rates are labelled as the corresponding
terms in I. The magnetic terms have to be assigned to the sum of the dipolar and orbital
terms and, for s states, to the Fermi contact contribution. So far we have carried out the
non-relativistic symmetry-adapted limits for (Tl"l)ﬁ-,ag, (Tl"l)s‘d, (T:_i)g and (Tl_l)?l and
have arrived with the corresponding formulae in I. (The last line of equation (14) in I
contains a misprint: E” in the term —8n .7 ..y must be replaced by E'.)

3. Practical calculations and approximations

This section describes the calculation of the electronic structure and the approximations
used in applying the foregoing formulae inclusive of the appendix.

All calculations rest on self-consistent band strocture work with the LMTO and RLMTO
method (Andersen 1975). For each 3d and 4d metal we performed two independent band
structure calculations. Relativistic effects are considered on the one hand within the scope
of the scalar-relativistic LMTO version (Skriver 1984), which contains the mass—velocity and
Darwin corrections up to any order using a method related to Koelling and Harmon (1977).
On the other hand, the second series of RLMTO calculations is also derived from the Skriver
computer code and is directly based on Dirac theory (Eriksson 1989).

The following specifications refer to both methods. They start with renormalized
relativistic atomic charge densities. In the atomic and band structure calculations the
exchange and correlation potential of von Barth and Hedin (1972) was used. The lattice sum
in the structure constants was extended over about 30 atomic shells in direct space as well
as in reciprocal space, so that their numerical error is lower than 0.1%. The underlying ¢/a
ratios listed in table 2 are experimental values (Wyckoff 1974). In each iteration the band
structure data at 64 k-points in the irreducible past of the Brillouin zone (IBZ) and in the
final two iterations at 448 k-points in the [BZ were used to construct the new potential. The
partial DOs were obtained by the tetrahedron method (Jepsen and Andersen 1971, Lehmann
and Taut 1972). To all materials the complete LMTO formalism including the combined
muffin tin corrections was applied. The basis set includes s, p and d states leading in
the RLMTO scheme to an eigenvalue problem of the dimension 36 x 36. Concerning the
calculation of the relaxation rate, we have to distinguish between two series.

(i) Series 1. The NT values, resting on scalar-relativistic band structures are named
series 1. In this case we proceed as follows. After achieving self-consistency, the Dirac
equation is integrated in the crystal potential at the Fermi energy. The so-determined
radial parts of the major and minor components show practically no difference to the strict
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Table 2. Lattice constants in Bohr radii, partial pos in states per spin orbital atom Ry and
hyperfine coupling constants in 10? T (109 Oe in I), The results belong to series 2 for 3d and 4d
metals and to series 1 for Sd metals.

Sc Ti Y Zr Tc Lu Hf Re Os
a 6.251 5575 6.888 6.104 5.168 6.620 6.038 5.216 5.168
cfa 1.592 1.586 1.572 1.593 1.604 1.585 1.583 1.612 1.579
noy1 0.198 0.064 0.251 0.085 0.101 0.075 0.044 0.056 0.024
"y 1.279 0.359 1.167 0.469 0.265 1.544 0.395 0.231 0.074
n_y n 1.251 0.333 1.132 0.519 0.247 1.544 0.395 0.231 0.074
nan 1.984 1.031 1.799 1.121 0.837 1.543 0.710 0.764 0.765
o33 1.967 0.974 L.719 0.872 1.004 1.543 0.710 0.764 0.765
H.jy -4272 -35843 -8.100 -~11.170 -—17.218 -—-23.784 —30.853 —46.531 -52242
Hyy 1.277 1.857 2.648 3.878 5.863 6.886 9,574 14.633 15.408
Hoss —0620 -0901 1245 -1.820 -2.717 —2.661 ~3.67% —5.389 —5418
F 0.391 0.649 0.490 0.845 2.089 1.047 1.666 3.649 4,943
H_3_3 =0254 ~0424 =0.311 —0.536 -1.312 —{0.588 -0.934 =2.000 -—-2.698
H, 2.848 3.396 5.400 7447 11478 15.857 20.569 31021 34.828
H, 0.626 4.910 12711 1.860 2.788 2922 4.048 6.031 6.180
My 0.128 3.214 0.159 0.274 .672 0.316 0.502 1.087 1.468

relativistic results. Since there is no distinction between different total angular momenta,
alt nT with k =1 or k = —1 — | are approximated by the same value:

r Ny

My = 20+ D (12)

where N; is the partial number of ! states per Ry and atom. The mized DOS and hyperfine
coupling constants are handled similarly in the series of Dirac calculations. Series 1 contains
all metals under consideration.

(ii) Series 2. The calculations in the framework of Dirac theory are called series 2.
Since we did not subdivide the DOS of the « states with regard to the representations I" any
further, we assume that every representation I'(x) enters the partial «-DOS with the same
weight:

nr = NK
(1.4 2|K|

(13)

where N, is the partial density of « orbitals in states per Ry and atom. So the densities
nz’l_l and nf ; are in the T calculation exactly. Table 2 shows the partial DOS of this series
for 3d and 4d metals, and of series 1 for 5d metals. The mixed DOS In,l;, |? are approached
by n¥, nl.,./2, which is only an empirical value. This is of course the poorest approach made
here. The amounts of the actual mixed DOS may deviate considerably from it. All terms
in equations (A3)—(A14), which contain real parts of a DOS product, have been neglected
because they are not fixed in sign and the real parts of the expansion coefficient products
compensate partly in the summation at an isoenergy surface. This also shows up in the non-
relativistic limit, where all these DOS lead to differences between two densities, except for
the s—d and p—d mixed DOS. For example, the density n§13 is in the non-relativistic transition
equal io ~6/5(ngry — naq). Due to the local character of Tf’ the radial integrals are,

with good accuracy, restricted to the WS sphere (Asada ef al 1981, Akai 1988), as already
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involved in the formulae of the preceding section. Series 2 contains only the 3d and 4d
metals,

In summation, both computation series use the correct Dirac hyperfine interaction. The
essential difference is that in series 1 the consequences of spin—orbit coupling for the band
behaviour at the Fermi energy and therefore in the DOS are disregarded.

Contributions due to matrix elements (A15) with different angular momenta have been
checked. The s—d term H_;, is, for example, three orders of magnitude smaller than the
s term H_,_;. If all such terms, which were omitted in the formulae in the appendix,
are included, they contribute 2 X 107*% to the magnetic relaxation and 5 x 107*% to the
quadrupole relaxation in Se.

Often the non-relativistic coupling constants are of interest for practical estimations. The
following combinations of the H,, yield the usual coupling constants in the non-relativistic
limit:

Ho=~2H_, (14)
H, 1
I 1Tk —
A= ""[_z_1. (2

For non-s terms we define one uniform coupling constant for a given [:

p, o VL O DL
T a4l

(16)

The terms H; and H; are the relativistic counterparts of the Fermi contact coupling Hr and
H!, in I, respectively. All these coupling constants are listed in table 2, because they are
useful for the further analysis of measured data. The combinations (16) agree excellently
for all metals with H;rb in 1.

4. Results and discussion

This section gives a survey of the final results, which are subsequently discussed in view
of the focal aspects.

4.1. Survey of results and general trends

The metals in question permit systematic investigations, because some of them have equal
valences and therefore similar electronic structure. The main quantities that affect the
relaxation rate are the hyperfine coupling constants and the partial DOS.

The hyperfine coupling constants are shown in figure 1. To compress the data, we use
the combination {16) of the two hyperfine constants corresponding to angular momentum
[. The quantity H; does not enter Tl“1 directly, but is suitable to give a qualitative survey
of trends, and it has the advantage of providing the usual coupling constants in the non-
relativistic limit. Figure 1 was restricted to p and d states, since they determine T{" in
transition metals. The constants A}, and H; increase from the 3d to the 4d period within
one group by factors of about 2 and 1.3, and from the 4d to the 5d period by about 2.4
and 1.9, respectively. Along a period, Hy increases more strongly than H, for reasons of
different local character of p and d states (Asada and Terakura 1981).

The increase of the hyperfine coupling in one group is contrasted by the decrease of the
DOS at the Fermi energy. To simplify matters, figure 2 shows only the tota] DOS. It shows



DOS {STATES/ATOM RY)}

Spin-lattice relaxation in HCP transition metals

o]

H, (10°7T)
N9

3971

-t
- "‘,"’ -t
("
1 L] (] L I ] ) | ] | ! ;]
Lu Hf Re Os Lu Hf Re Os
Y Zr m----- Te Y Zr ------ Tc
S¢ Ti ==e=- 8¢ Ti ==~

Figure 1. Relativistic magnetic hyperfine coupling constants Hp and Hy for p and d states at

the Fermi energy.
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Figure 2, Total pos for HCP metals in a uniform scale, calculated by the complete self-consistent
LMTO method.

that the d bands get broader from 3d to 5d metals due to the overlap of the d valence states.
Further element-specific features of the DOS are given in section 4.2.

The total magnetic relaxation rate, divided by the squared gyromagnetic ratio (12/1)?,
shows that the increase of the hyperfine coupling is the decisive tendency from one period
to the next, which is only slightly diminished by the band broadening (see figure 3). The



3972 R Markerdorf et al

W
T
I

(T (1) (s
s
1

.
1 - [] L L } 1
Lu Hf Re Os
Y Zr memmeeeeee- Te

SC Tl ............

Figure 3. Theoretical magnetic relaxation rates (71T )4, divided by y§ = (u/1)?, with z in
nuclear magnetons and 7 in units of &.

alteration of the DOS at the Fermi energy recurs systematically in every period, a fact that
also shows up in the relaxation rate.

Tables 3 and 4 show the results of series 1, i.e, founded on the scalar-relativistic LMTO
scheme with relativistically comrect hyperfine coupling, and table 5 shows the results of the
full Dirac calculations of series 2. The contribution of the core polarization (7} T)c‘p' and

the final results (T 'I‘);\S'ada are taken from I and II respectively. The measurements (T} T);(L
were reviewed by Carter et al (1977), with the exception of Zr (Hioki ez al 1975, I) and Re
(Dimitropoulos et af 1989). The very small p—d quadrupole contributions (A14) have been
omitted in all these tables. (TIT);;] poly is the rate averaged over all directions, i.e. for

sin® 8 = 2/3. The quadrupole moment of 'Zr has been found in Battgenbach et al (1978),
enabling us to include its quadrupole relaxation in addition to I and II.

At the beginning of the d series, relaxation by p states may compete with that of d
states because of the stronger electron-nucleus coupling of p states. This is seen in other
quantities of local character, for example the field gradient examinations of Blaha er al
(1988). The tables make it clear that the relative proportion of p relaxation increases in
metals with equal valences, for example from Sc to Lu, because the p coupling is visible
enhanced more strongly than the d coupling. This leads to the fact that, in the 5d metals,
p relaxation is relatively large up to Re in the middle of the period.

In the 5d series only measurements in Re by Dimitropoulos et af (1989) were available.
The measured 17 agrees fairly well with the numerical value, whereas the partition of
the total relaxation rate into s and d contributions deviates from theory. Using an s—d
two-band model, Dimitropoulos found the magnetic contributions (T.T);' = 1.48 and
(M7 ' = 1.15, whilst our diagonal magnetic results for '‘®*Re are (M) = 042,
(T;T);’ = 0.78 and (Ti7T); ! = 1.11 in units of (sK)~!. The main reasons for the
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overestimationt of the s contribution by the experimental analysis lie in the hyperfine
coupling and the model. The Hypin value used (Hypimi = 0.7 x 102T (10°G)), as
estimated by Dimitropoulos from the free-atom {r~3) value, is too low because enhancement
rather than reduction should be used, as was stated by Asada et @l (1981), referring to
the renormalized atomic picture of Hodges et @l (1972). In addition, relativistic effects
enhance H,, particularly in the 5d series. We found for a d state at the Fermi energy in
Re Hy = 1.1 x 10 T. Furthermore, the p states cannot be neglected because in comparison
with d states they increase in importance the higher the period number is. That is why the
calculated relaxation rate by p electrons of magnetic plus quadrupolar origin is even larger
than the rate of d electrons.

Table 6. Comparison of relativistic corrections for s hyperfine conpling from band structure C;
with Pyykko Cspy-

Cs Cs.py

Sc 1.048  1.051
Ti 1.056  1.056
Y 1183 1192
Zr 1.156  1.203
Te  L1I8t 1.241

Pyykkd et al (1973) calculated the relativistic correction factors for magnetic hyperfine
interactions with hydrogen-like atomic functions analytically, and tabulated them for the
outermost s, pijz and pssp states up to Z = 100. In table 6 we compare the Pyykkd
correction C; py for s states with the quotient

Hy

Cs=
s He

a7

from band structure, as has already been done in II. The good agreement between C
and Cgpy for 3d metals is due to the nearly Coulombic potential in the closer nuclear
environment, which is significant for the s coupling (apart from the differences between the
atomic and Fermi energies). In the 4d metals the slightly increased screening in this region
causes slightly larger differences.

4.2, Relativistic band effects

We now discuss band effects, which influence the number of electrons relaxing the nuclei.

We dea] with the elements Ti and Zr, which have four valence electrons. Both metals
supply a good background as to the experimental and theoretical material. Jepsen examined
the similarity of the electronic structures, in particular the Fermi surfaces of Ti (Jepsen
1975} and Zr, Tif (Jepsen er al 1975). According to Jepsen the third, nearly unoccupied,
band in Ti at the I'A line of the IBZ additionally intersects the Fermi energy (see figure 4)
causing a change in the topology of the Fermi surface in comparison with 4d and 5d metals
of the same column in the pertodic table {Zr, Hf). Jepsen et al (1975) guessed that in Zr
the band in question takes the same turn. Our theoretical 7;~! values and energy bands in
series 1 and 2 are useful for evaluating these statements.

Figure 4 contrasts the scalar-relativistic bands of Ti near the Fermi energy with the full
relativistic ones. In figure 4(2), 2nd in the work of Jepsen, which includes relativistic effects
according to Andersen (1975), the hole Fermi surface parts I'3h and A3h are disconnected,
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Figure 4. Cut of {(a) scalar-relativistic and (b) relativistic band structure for Ti near the Fermi
energy. In (c) we compare the sections of the Fermi surface parts I"3h and A3h in the symmetry
planeg according to Jepsen (1975) (full curves) with {a) (full circles) and (b} (open circles,
broken curve).

Here the first symbol (or the first two symbols in the case of an open surface) denote(s) the
centre of the surface (or the open direction), followed by the number of the band in which
it Hes; h stands for the hole character. In non-relativistic calculations with the optimized
LCAO method, developed by Eschrig, the third band dips more distinetly, namely by about
7 mRy, into the occupied region (Eschrig 1988). In our caiculations this band has, in the
occupied part along the T'A line near A, 653%d, 32%p and 3%s character, with increasing
d character up to 82% at the point A, In both relativistic calculations of figure 4 this band
is shifted up with respect to the Fermi energy, compared with Eschrig, because the d states
are lowered less than s and p states by relativistic effects. The band considered is, in the
region of intersection, further shifted by 3 mRy in the Dirac calculation (figure 4(b) against
figure 4(a)) and steps out of the occupied conduction band. So the two closed hole surfaces
I'3h, A3h connect to a surface I"'A3h opened along the line I'A. To get some evidence
regarding the actual location of this band we exploit the strong dependence of 7, upon
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the partial DOS. By the stepping out of the discussed band, the DOS decreases by about one
state per Ry per atom. Heeding the above-mentioned portions of I character it is clear that
this concerns mostly the d states. Fortunately, the d states supply the dominant contribution
to 7' in Ti and therefore the very subtle band shift influences are discernible only in the
Ti d relaxation rate in tables 3 and 5. The results of series 2 approach the measured values
very well (see table 5). Hence a comparison of the two series with experiment hints that the
Fermi surface of Ti contains an open I’ A3h surface part and is topologically equivalent to
that of Zr and Hf. Nevertheless, this discussion has only an exemplary character for similar
cases. The differences in the rates are too small for a clear decision.
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Figure 5. Stretched cut of the (a) scalar-relativistic and (b) relativistic band structure for Zr
near the Fermi energy. In (¢) we show the whole occupied region of the Dirac band structure,
containing the cut b) between the broken lines.

The corresponding band structure cuts for Zr are shown in figure 5. The band in
discussion lies fully in the unoccupied region in the scalar-relativistic verston of series 1
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along I'A. The Fermi surface has a similar form to the I'A3h hole surface of figure 4.
Jepsen et al (1975) register d bands somewhat too low lying in comparison with measured
electronic heat capacities and with de Haas—van Alphen measurements (Everett 1972a, b),
suggesting a relative upward shift of the d bands by about 10-20mRy in Zr. Though
we cannot support the dissection of the I'A3h hole surface proposed by them, we see the
same general trend of the d states in our self-consistent calculations, namely that agreement
with experiment would require a raising of the d bands against the Fermi energy by about
3mRy. A hint about the relative shift of the Fermi energy is provided by a comparison
of the experimental heat capacities with the calculated ones in table 7 in connection with
figure 5. The heat capacity Yexp used in table 7 was measured by Heiniger et al (1966). In
the theoretical coefficients yn enters only the calculated DOS. So the ratio Yexp/yw = 1+ 1
represents the electron~phonon enhancement A of . The empirical values I4-A.np are based
ot measured thermal properties entering McMillans formula (John 1983). A comparison
of 14+ A and 1+ Aemp shows that the calculated DOS are generally too large. If the Fermi
energy decreases by only a few mRy with respect to the d bands, it slides into the spin—orbit
sphit energy range of the third band near the point H in the IBZ, and the DOS is appreciably
depressed. Because of this distinct experimental indication we computed 7" on trial at the
energy Er—5mRy. In doing so 7, falls short of the measured value, and the enhancement
of ¥ by electron—phonon interactions is overestimated. A relative band shift of about 3 mRy
explains the experimental 7, ' value. So there is considerable evidence that the spin—orbit
splitting is responsible for the large error in Asada and in our Zr relaxation rate.

Table 7. Total pos N{EF), temperature coefficient y of the heat capacity C = y T and relaxation
rate (7371 of Zr.

Jepsen et al This work This work Yesp
E=Ep E = Er — 5mRy
N{Ep} (states/atom Ry} 13.1 12.84 8.48
v (mImol~! K-2) 227 222 147 2718
Yerp/¥in = (1 + 1) 1.22 1.25 1.89
Emp. enhancement (1 + demp) 145 145 1.45
(NLTy ! Ky 0.0648 0.0295
(MT)ay 5K 0.035 = 0.005

4.3. Quadrupole scattering

Finally, we point out here some results on nuclear quadrupole relaxation.

This mechanism is brought about by fluctuating field gradients of scattering conduction
electrons. As the nuclear spin levels are about seven orders of magnitude lower than
electronic energies the electrons scatter quasielastically, and consequently only electrons
at the Fermi energy take part. Therefore one difference between the calculation of static
gradients of the crystal field and the determination of guadrupolar relaxation is that, in the
former case, all band electrons contribute and in the latter case only electrons near the Fermi
energy contribute, The estimation of field gradients has a long tradition in the Sternheimer
anti-shielding concept (Sternheimer 1950). The anti-shielding theory, mostly applied to
insulators, proceeded originally from the assumption that the dominant contribution to the
gradient is also induced into the local atomic environment from the surrounding lattice in
metals (Watson et al 1965). From the present viewpoint it appears to be a more local
phenomenon {Kaufman and Vianden 1979) in most metallic systems. The decisive reversal
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was initiated by the graphical confrontation of calculated lattice contributions against the
(essentially) measured electronic contributions, as given by the difference between the
measured value and lattice contribution. Using all available data this revealed the so-called
universal correlation (Raghavan er al 1975, Raghavan 1976). Crudely stated it proved that,
relatively independently of the particular metal, the measured total field gradient is about
twice the amount of the calculated non-local lattice contribution, which has opposite sign:

G = —K (1 — Yoo)g 2t K=2 (18)

So the local electronic site contribution is three times that from interatomic Sternheimer
polarization, described by the anti-shielding factor y,,. Recent full-potential calculations of
Blaha er al (1988) intensify this fact. According to them, lattice terms contribute only 10—
15%, though a direct comparison with anti-shielding calculations is not possible. The local
character of the field gradient lends support to the fact that the quadrupole coupling is mainly
covered by (10). The guadrupolar spin-lattice relaxation possesses some relationships with
the field gradients in HCP metals. The dominance of the p contributions is confirmed for
the quadrupole rates in all metals, except for Os. In our calculations the (py/2 — p3/2) term
contributes dominantly.

Re is the only measured metal in which the quadrupole relaxation is at least comparable
with the magnetic relaxation. The good agreement between theory and experiment supports
the usability of the calculations of g,,. The recovery of the nuclear magnetization in
Re shows a multi-exponential behaviour, due to the considerable electrostatic quadrupole
splitting of the nuclear levels. The measured 77 in Re was determined by a fit of the
magnetization curve to the theoretical behaviour for pure magnetic relaxation of the :l:%
transition (in NMR) and the :b%, :i:—g- transition {in NQR) for I = % The portion of quadrupole
relaxation is, according to table 8, about 20%. As may be seen in table 4, the agreement
between theory and experiment is excellent. Lu and Hf possess very strong guadrupole
interactions (see for example table 8). Because of the strong quadrupolar line broadening it
appears doubtful that NMR/NQR spectra can be obtained in pure metallic Lu and Hf. Os could
be suitable for investigating quadrupole relaxation if it allows saturation of the quadrupolar
broadened lines. One of the Os isotopes has a spin [ = % Since the other isotope is
purely magnetically relaxed ( = -%), the quadrupole relaxation may be directly extracted.
Unfortunately, the latter isotope has a very small natural abundance.

Often the ratio of quadrupole and magnetic spin~lattice relaxation is of interest. Obata
{1964) presented an estimation of the ratio between the quadrupole and the magnetic dipolar
relaxation rate, Proceeding on the assumption that the nuclear system is relaxed purely either
by p or by d electrons, one finds in the spherical case the modified Obata ratio for the total
magnetic relaxation

@, 21 +3\/0\"
o, =) ()

J
|~

Iy T4 =3 (19)

w
v

with the nuclear magnetic moment g in units of nuclear magnetons and ¢ in barns; ('I‘l""‘);'!lalg
is the sum of the dipole and orbital relaxation rate by states of angular momentum . Table §
contains the ratio (Tl“).:,/(T,”’)mag from the numerical results and the ratios (19) with rp
and rg. At the beginning of each period the numerical ratios are close to the ratio (19) using
rp, while the results in the middle of the period reflect mainly d relaxation.
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Table 8. WNuclear data, ratios between the quadrupolar and magnetic relaxation rate
(17" )g/ (T} mag using the numerical results, and ratios (’I‘l‘l)fl,l(Tl‘])‘rﬂag from (19).

plany  Qlamp T/ T ey (TR g 78T gy
¥ 47492 02 2 0.0013 0.0015 0.00043
a1 -07870 029 52 0056 0.1 0.033
Pn -11021 024 72 00l 0.033 0.0096
By 01368 — 7 — — -
ze -1208 -021® Sz 0.018 0.022 0.0064
B 56513 03 92 0.00062 0.0018 0.00051
P 221 56 W2 38 45 L3
e 315 8.0 7 3.0 35 L
Tur osl 3.0 713 169 49
IPHF —0.47 3.0 92 19 26. 74
15Re 30437 27 52 028 0.62 0.18
¥Re 31760 26 52 025 0.56 0.16
®0os 006374 — 2 — — —
®os 06506 038 32 059 19 0.55

* Carter et al (1977).
b Riittgenbach et af (1978).

These results could be useful in the case of considerable static quadrupolar interaction
in metals and alloys causing a multi-exponential recovery. In this case the ratio of the
electronic transition probabilities Wi, to W) and W, (the quadrupolar electronic transition
probability for Am = 1 and Am = 2, respectively) is needed for the full relaxation matrix,
Under the assumption W; = W, = W,, which holds quite well in metals, equation (19)
provides (apart from a prefactor) the ratio Wiag/ Wi if an appropriate value r between 7p
and ry is chosen. Some values for metals are given in the fifth column in table 8.

5. Conclusions

In conclusion, we have presented explicit formulae for the nuclear spin-lattice relaxation in
HCP metals based on Dirac theory and symmetrized spin—orbit functions. We applied them
to 3d, 4d and 5d metals using the self-consistent scalar-relativistic and full-relativistic LMTO
method. It was shown that the amount of p relaxation increases from the 3d series to the 5d
series within one group. This must be considered when applying s—d-band models. Similarly
to Asada and Terakura, we found in Zr a relaxation rate that is twice the experimental one.
In addition we utilized other electronic structure data to show that there is strong evidence
that this deviation is due to spin-orbit splitting near the Fermi energy. The Fermi surface
of Ti was discussed in connection with the relaxation rate. In Re we compared the partition
of the total relaxation rate into contributions from different angular momenta with an s—d-
band-madel analysis. The extension of the Obata ratio to the complete magnetic scatiering
including orbital interaction was used to estimate the amount of quadrupole scattering. The
comparison of these estimates with the numerical values show that the computed values
tend more to the ratio for pure p relaxation at the beginning of each period, and to the ratio
for d scattering in the centre of a period.
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Appendix. Expressions for the spin-lattice relaxation rate

The relaxation rates are classified with respect to the orbital angular momenta. In our
convention the diagonal relaxation rates are designated by one index and the off-diagonal
rates are designated by two. The magnetic relaxation rate then contains the following
members:

(1) (1)5 1\° 1y¢ 1\* 1\
) Il € B € I € I 5 IR G <A1>
T / mag T/ oag T / mag Th / g Ti/wag \T1/ mag
In the following formulae 3 is the angle between the crystal ¢ axis and the external magnetic

field. For the diagonal terms we get

4Jrk T
Cy=—2

Bm)? (A2)

1 s
(), = owrtigoeli” (A3

1

14
(?1-) = CuLH} §0m3)? + H2p p 35514120075 ) + 304 ,nlh )
mag

+ 3 (S0P + 307 )% — 22" a™ ]sin? g}

+ Hz 213{2[" ~z—-2+ 3” —2—2 + Re("l—z)zl

+3(n0 R, - a4 Relnlt, 1) sin? B}

+ Hyy Hy o B2 RefnTtal® (=2 + 3sin® )

+ Hy_oH o _2 s Re[ 2n1_2n_2_2+3n1_2n_2_2(1 — sin® B1]

+ H11H-’2—23|"1_2| (4 — 3sin’ B)]] (Ad)

1 d
(F,) = Cull H 5 (412(n33)* + 3nping3]

4 3[_(nr7)2 + 3(n1‘9)2 _ 2"';5"”] sinz B8}
+ HZ,_ 31225{4[9(”—3 3+ 10035 5Ty 5+ 16075 onDy )
+2[—8(n"%_y)% + 25(n™_ )%+ 9(n",_,)?

—16n"}_ 3n_3 3 IOn_3_3n %3] sin® 8}
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+ H_ 3 50{2[3”22”-3 3t 6"2”{}3 3t ”22"—3—3 + 10”52"?3 3

+3Re(ny’5)? — 2v/6Re(n] 4n5°3)]
+ [9n73n ;s —6nginy g~ mygnll_y — 10n53nT%
+8n3n",_; + 9Re(nl’ ;)% + 2v/6 Rent’ 0y’ , + 8 Re(nl’ ;)1 sin® B}
+ HpHy 3 Re[—~4v/bniny" s — 12033052 o + 2v/6niiny
+ (4«/6:!22112_3 +6n22n2_3 NG n,_zn2_3 + 12n22n2 5) sin? B]
+ Hy3H_3 375 Re[2(=3+/6ny 3n™_, +4+/6n37 50"
— dny?3nT_y + 100575015
+ (VBny ynT_y — 4vBnTgnTs g 4 4ng?5n Ty — 10n325nTY
— 12n2_3n_3_3) sin ﬁ]
+ HpHo3-37%[4(3Iny" 51> ~ 2v/6Reny ;n1%,)
+ (=Tlngl 5% = 9lny? % + 4v/6 Reny 3n",) sin® B11. (A3)

Re denotes the real part of the mixed DOS product. The non-diagonal contributions arise
from terms of the form

(Ty 1 (D] Huag ) Tv k] ET y se2 (1)) Hia [Ty i3 (1)) I#1 (A6)

1 sd
(?1) = Culf-1-1 - {{Ren Tantn_s(—2 — 3sin® B)

+ H_- 1H2245|n_,2|2(4 — 3sin? B)

+ Hoy Hoaos B0, 2G — 2sin B)] (A7)

1\/
(?1) = CuiHn H_s—32[n™y, 12 sin® g + Hy_ QH_32~{5_ Ren",n"% (—2 + sin® B)

+ HiaH_3-3% Re[-2+/30n",_jnT%,
(1(.1\5:'1_2__31':_31 + J—ﬁn_z 3"-31) sin? 8]

+ Hop o Hpn S |nl,? sin® 8

+ H g2 Hy 34 Re[—2+/15n0% 3032,

+ (“/—"-2—3"2 2t 6”—2—3”2—2) sin” g1

+ H_p o H_3 335 Re[—4v/1507%_,n_,

F (=510 412 = 91n"S, 42 + 24158 a5 ,)sin® A1) (A8)
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We are lead to similar formulae for the quadrupole relaxation:
1 1Y /1y ( 1 )P"
(Tl)q (T1)q (Tl)q Tl q ( )

AksT { ¢ \?
Co = 10
Q h (47!’60 Q) (A10)

1 P
(_> = CQﬁq 2- 2]00{20’1—2—2”-_2-2 + 3[(”—2_2)2 + (n._z...z)z lnrz—zn._.z_zl sin? £}

+gi_aigl23n1tnY o+ 17n(tnDy_, — 3Re(n]? )]
+307ntnT,_, — TnTin" , + Re(nl® )] sin? 8}

+ G1-2g—2-22 Re[14nT* 0™, — 320 Y o 5ny %, L) sin® 1]
(Al1)

1 d
(—) = Collgh 75 {20nyn5 + 3[(rE)? + (n12)? — 2n1nD21sin? B}

+q2, 31215{20(2”—3 Iy 3""4"-3-3"4—3+"E”3-3"Egs-3)
+ [16(n7_3)? +25(n"y_3)% + (5 _5)°

- 30n"%_gnl%_y — 42005 +300™_,n" ,]sin B

+ g2 _y g 1005n53n"%_5 +32n33n"_, 4 26nT10T

+ 151:!2_2:1_3 3 +6n22n_3_3 5Re(n )2+ 146 Renz_a.r:2 |
+3(37npn_y — 80ngin™, . — 62n11a"

+ 3nginly s + 30n3n"_; + T2np3n", .

— 13Re(n; 3)2-26J6Re(n2_3n2_3)+72Re(n2_3)21sm 81

+ gng2-3755 Re[10(=6nn5% s — +/6nl3nl7 .

+3(=26n3n57 ; + 18032082 5 + TV6nEAlT, + 1200200" ) sin? 8]
+ g2-39-3-37555 Re[10(—4v/€ny73n"%_; + 5+/6n57 n",

+ 932300y 5 ~ 30" ynTy )

+ 3(=4/6ny" ™ +10V6ny 50"y, — 11MEnS 70T

—~9np3n_s — 15n02,n"_; — 6n52.nTy_ysint B]

+ g229-3-3755 Re[—20+/6 Reny” 413,

+3(4In5 5> + Re 8v6ns7,n"%, — InD7 %) sin? 1. (A12)
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The non-diagonal contributions are due to combinations

{Tyrer M H Ty sy (DT yaea (D HJT s (1)) 10 (Al13)

1y /30
(-ﬁ) = Colgq1~2q2-3%5 Re[n1 3n_2_2(2 + 35in? B)]
q

+ g1-29-3-375z Re[—2+/30n}" 3013,

+3(10v2n]8 0"y, — +/30n]% ;n",) sin? 8]

+ q_z_gqmgain_%?z]z sinzﬁ + q_z_.zg_ni-.},-s- Re[—2+/ SOnF’ 3ng_°.2

+3(— ~/_n__22n_3 2-|-6n_22n_3_2) sin B]
+g-24-3-373 Re[4\/_0n_2 3n
+3(=5In"Y ° = nD_ 3|2+2~/" Ren_z_sn_3 2) sin’ B}, (A14)

Terms containing matrix elements with different anguiar momenta
CyeOIEATY'EWY  1TET (A15)

are not written here since they are negligible (see section 3).
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