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Abstract Symmetry adapted expressions for the magnetic and qlwdNpolaI nuclear spin-lattice 
relaxation time TI in HCP metals are derived from Dirac theory. They are applied systematically 
to 3d, 4d and 5d metals (Sc, Ti, Y, Zr, Tc, Lu. Hf, Re, Os) on the badis of semi-relativistic 
and full-relativistic self-consistent LMTO calculations. General trends and relativistic effects are 
discussed. The relaxation rate T;' in Zr is overestimated theoretically by a factor of two, as 
already found by Asada and Terakun There is strong evidence lhat the reason for this mor lies 
in spin4rbit splitting. Shifts of 3 mRy in the band position explain the experimental T;' in Zr. 
The Fermi surface of Ti is discussed in connection with the theoretical relaxation rate. Some 
quantilies th3t are useful for the evaluation of measurements like hyperfine coupling constants 
and ratios between magnetic and quadrupole relaxVion rate8 are presented. Comparison with 
the experimental data shows that the quadrupole scattering is well reproduced by the theory. 

1. Introduction 

In this paper, expressions for magnetic and quadrupole nuclear spin-lattice relaxation by 
conduction electrons in hexagonal close packed (HcP) metals are derived from Dirac theory. 
The resulting relations are applied to 3d. 4d and Sd transition metals on the basis of semi- 
and full-relativistic linear muffin tin orbital (RLMTo) band stmcture calculations. 

After the derivation of a concept capable of describing the relaxation process 
(Redfield 1955, Hebel and Slichter 1959) and the clarification of the main driving 
mechanisms (Komnga 1950, Obata 1963, 1964, Yafet and Jaccarino 1964 and Gaspari 
et a1 1964), namely Fermi contact, dipole, orbital, electric qUadNpOk interaction and core 
polarization, a lot of material-specific estimations of the nuclear spin-lattice relaxation 
rate T;' were made in connection with experiments. Basic inputs were empirical andlor 
measured electronic structure quantities and atomic data such as hyperfine coupling constants 
and nuclear moments. One aim was to subdivide the experimental results, which were 
increasingly detailed with regard to the electronic sources, with the help of estimated atomic 
constants, s-d-band models and quantities deduced from other experiments. With growing 
complexity of the electronic shucture, this method becomes less reliable and a microscopic 
treatment is required. 

On the basis of fast and accurate band structure calculation methods, which were 
developed in the 1970s, the extensive experimental material was worked on by many 
theoreticians in the 1980s. In a series of papers (Asada et al 1981, Asada and Terakura 
1982, 1983) the nuclear spin-lattice relaxation in pure cubic and HCP metals was examined 
carefully. The authors of these papers completed the formulae of Narath (1967), who 
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elaborated a part of the magnetic relaxation rate in HCP crystals; they studied 3d and 4d 
metals (Asada and Terakura 1982, to be referred to hereafter as I) up to a relativistic 
computation of the contact contribution (Asada and Terakura 1983, to be referred to hereafter 
as E). A little later John et al (1983) presented the complete relativistic formulae for the 
magnetic and electric quadrupole relaxation rate in cubic metals and applied them to heavier 
transition metals. 

The present work continues the outlined c o m e  of investigations for HCP metals. It 
includes the same metals as I (Sc, Ti, Y, 21, Tc) and additionally the 4f metal Lu and the 
5d metals Hf, Re and Os. Owing to the sensitive dependence of the electronic properties 
in the nuclear vicinity, relativistic effects influencing T;' are already perceptible in lighter 
metals. This is why we prefer a Dirac description. 

A systematic correction is the relativistic contraction of the electronic states near the 
nuclei, which is most important for the s states (see II). Furthermore, very small band shifts 
and splittings due to the spin-orbit interaction may change the relaxation rate. These effects 
on the band structure usually play a minor role for 2 < 36 (Akai et 01 1990). but here we 
show that very subtle effects on the band structure may have some influence on Ti in Ti, 
and alter T, appreciably in Zr. A thud consequence of the Dirac treatment is the further 
reduction of the symmetry by spin-orbit coupling, apart from its band effects. In the local 
HCP point symmetry group D3h. s, p and d states belong to four irreducible representations. 
Spin-orbit coupled lattice harmonics are invariant under operations of the doublepoint 
symmetry group (DPSG) D3h. which has only three irreducible extra representations (pyykka 
and Toivonen 1983). So more different angular momenta I appear in the same representation 
r and interfere in non-diagonal hyperfine scattering terms 

(r YKI ( 1 )  IHhflr'Y'Ki (l))(rYK*(I')I Hhllr'Y'K;(l'))* 1 # 1'. 

A further motivation for the studies was the hope of finding reasons for some discrepancies 
between theory and experiment in I. Beyond that, the extension to 5d metals allows 
systematic trend investigations and a study of the quadrupole scattering. 

In order to examine these points more closely and to improve reliability we thought 
it advantageous to carry out two series of calculations that include relativistic corrections 
on different levels. We focus particularly on the question of how relativistic effects and 
characteristic features of the electronic smcture affect TI.  

2. Spin-lattice relaxation rate 

In this section, expressions for the practical calculation of the nuclear spin-lattice relaxation 
by relativistic conduction electrons in HCP metals are introduced. A derivation of these 
expressions was given by Markendorf (1991). We do not present relativistic formulae for 
the core polarization, because in this work we use the values from 1. 

The spin-lattice relaxation in metals is driven by the scattering of electrons at the 
nucleus. In a Ti process the hypertine interaction causes a flip from the nuclear Zeeman 
state [m) to Im') and a simultaneous transition between the Bloch states Ik) and lk'). 

The relaxation rate TT' in the spin temperature approximation (Slichter 1990) is 
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Table 1. Basis functions for the representations of the DPSG V3a. Q:, are the spiwrbit 
functions. 

In equation (1) E, are the nuclear Zeeman energies: and Wm,mt is the total transition 
probability between the Zeeman levels E,  and E,,, with EF being the Fermi energy. 
These transitions are induced by the hyperfine interactions 

(3) Hhf = Hmag + Hq. 

The Dirac hyperfine operator 

describes the magnetic interaction of the electrons with the nuclear dipole moment. It 
corresponds in the non-relativistic case to the Fermi contact, dipole and orbital interaction. 
Here z is the pseudoscalar matrix, is the nuclear gyromagnetic ratio, I and U are the 
nuclear and the electron spin operator respectively, e is the electron charge and i the unit 
vector TJr in real space; H,  is the quadrupole interaction 

Q . .  - lelQ 
' I  - I (2I  - 1) Cr;(zizj i , j  

+ Z j h )  - Si jP ]  

with the quadrupole tensor Qij, the quadrupole moment Q and the electronic field gradient 
operators qtj with the electron coordinates xi. The transition probabilities (2), ( 4 x 7 )  have 
to be evaluated with the symmetrized Dirac four-component spinors. The relativistic basis 
functions xLY for the representations of the DPSG D3h are presented in table I (Pyykko and 
Toivonen 1983). According to the interactions T;' has two parts: 

In the resulting formulae the hyperfine coupling constants occur, which we defined as 
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and the quantities 

k 

which are in the diagonal case K = K‘ the partial density of states (DOS) of K orbitals of 
the representation I? and in the nondiagonal case the sa-called mixed (01 off-diagonal) 
DOS. The hypertine couplings H,, are related to HF and H&, in I via equations (14x16). 
The quantities cry* are expansion coefficients of the Bloch states and g, and fK are the 
radial parts of the major and the minor component in the Dirac spinor at the Fermi energy. 
The integrals reach out to the Wigner-Seitz radius rws. The explicit formulae for the two 
contributions in (8) are given in the appendix. 

The magnetic and quadrupole operators (4), (6), (7) do not interfere in the scattering 
rates because their tensor components transform with respect to rotation mahices of the first 
and the second rank, respectively. Our relaxation rates are labelled as the corresponding 
terms in I. The magnetic terms have to be assigned to the sum of the dipolar and orbital 
terms and, for s states, to the Fermi contact contribution. So far we have carried out the 
non-relativistic symmetry-adapted limits for (Z‘;’)&, (T,-’)s$, (T;]): and (T;’): and 
have arrived with the corresponding formulae in I. (The last line of equation (14) in I 
contains a misprint: E” in the term -8nfidnE,,d must be replaced by E‘.) 

3. Practical calculations and approximations 

This section describes the calculation of the electronic structure and the approximations 
used in applying the foregoing formulae inclusive of the appendix. 

All calculations rest on self-consistent band structure work with the LMTO and RLMTO 
method (Andersen 1975). For each 3d and 4d metal we performed two independent band 
structure calculations. Relativistic effects are considered on the one hand within the scope 
of the scalar-relativistic L ~ O  version (Skriver 1984). which contains the mass-velocity and 
Darwin corrections up to any order using a method related to Koelling and Harmon (1977). 
On the other hand, the second series of R L ~  calculations is also derived from the Skriver 
computer code and is directly based on Duac theory (Eriksson 1989). 

They start with renormalized 
relativistic atomic charge densities. In the atomic and band structure calculations the 
exchange and correlation potential of von Barth and Hedin (1972) was used. The lattice sum 
in the structure constants was extended over about 30 atomic shells in direct space as well 
as in reciprocal space, so that their numerical error is lower than 0.1%. The underlying cla 
ratios listed in table 2 are experimental values (Wyckoff 1974). In each iteration the band 
structure data at 64 k-points in the irreducible part of the Brillouin zone (IBZ) and in the 
final two iterations at 448 k-points in the IBZ were used to construct the new potential. The 
partial DOS were obtained by the tetrahedron method (Jepsen and Andersen 1971, Lehmann 
and Taut 1972). To all materials the complete LMTO formalism including the combined 
muffin tin corrections was applied. The basis set includes s, p and d states leading in 
the RLWO scheme to an eigenvalue problem of the dimension 36 x 36. Concerning the 
calculation of the relaxation rate, we have to distinguish between two series. 

(i) Series 1. The ?i T values, resting on scalar-relativistic band structures are named 
series 1. In this case we proceed as follows, After achieving self-consistency, the Duac 
equation is integrated in the crystal potential at the Fermi energy. The so-determined 
radial parts of the major and minor components show practically no difference to the strict 

The following specifications refer to both methods. 



Spin-lanice relaration in HCP wansition metals 3969 

lhble 2. Lattice constants in Bohr radii. partial DOS in siates per spin orbital aiom Ry and 
hyperfme coupling constanls in 102T (IO6 Oe in 0. The results belong to series 2 for 3d and 4d 
metals and 10 series 1 for 5d metals. 

sc Ti 
6251 5.575 
1.592 1.586 

0.198 0.064 
1.279 0.359 
1.251 0.353 
1.984 1.031 
1.967 0.974 

-4.272 -5.843 
1.277 1.857 

-0.620 -0.901 
0.391 0.649 

-0.254 -0.424 

2.848 3.896 
0.626 0.910 
0.128 0.214 

HI Y zr Tc L U  

6.888 6.104 5.168 6.620 6.038 
1.572 1.593 1.604 1.585 1.583 

0.251 0.085 0.101 0.075 0.044 
1.167 0.469 0.265 1.544 0.395 
1.132 0.519 0.247 1.544 0.395 
1.799 1.121 0.837 1.543 0.710 
1.719 0.872 1.004 1.543 0.710 

-8.100 -11.170 -17.218 -23.784 -30.853 
2.648 3.878 5.863 6.886 9.574 

-1.245 -1.820 -2.717 -2.661 -3.679 
0.490 0.845 2.089 1.047 1.666 

-0.311 -0.536 -1.312 -0.588 -0.934 

5.400 7.447 11.478 15.857 20.569 
1.271 1.860 2.788 2.922 4.048 
0.159 0.274 0.672 0.316 0.502 

Re os 
5.216 5.168 
1.612 1.579 

0.056 0.024 
0.231 0.074 
0.231 0.074 
0.764 0.765 
0.764 0.765 

-46.531 -52.242 
14.633 15.408 
-5.389 -5.418 
3.649 4.943 

-2.000 -2.698 

31.021 34.828 
6.031 6.180 
1.087 1.468 

relativistic results. Since there is no distinction between different total angular momenta, 
d l  niK with K = 1 or K = - 1  - 1 are approximated by the same value: 

where N, is the partial number of 1 states per Ry and atom. The mixed DOS and hyperfine 
coupling constants are handled similarly in the series of Dirac calculations. Series 1 contains 
all metals under consideration. 

(ii) Series 2 .  The calculations in the framework of Dirac theory are called series 2. 
Since we did not subdivide the DOS of the K states with regard to the representations r any 
further, we assume that every representation r ( K )  enters the partial K-DOS with the same 
weight: 

where N ,  is the partial density of K orbitals in states per Ry and atom. So the densities 
nf ; - ,  and n; are in the TI calculation exactly. Table 2 shows the partial DOS of this series 
for 3d and 4d metals, and of series 1 for 5d metals. The mixed DOS &,I' are approached 
by n:&',,/2, which is only an empirical value. This is of course the poorest approach made 
here. The amounts of the actual mixed DOS may deviate considerably from it. All terms 
in equations (A3)-(A14), which contain real parts of a DOS product, have been neglected 
because they are not fixed in sign and the real parts of the expansion coefficient products 
compensate partly in the summation at an isoenergy surface. This also shows up in the non- 
relativistic limit, where all these DOS lead to differences between two densities, except for 
the s 4  and p d  mixed DOS. For example, the density ni l ,  is in the non-relativistic transition 
equal to %6/5(nEf,d - nard). Due to the local character of T;] the radial integrals are, 
with good accuracy, reskicted to the ws sphere (Asada etol 1981, Akai 1988), as already 
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involved in the formulae of the preceding section. Series 2 contains only the 3d and 4d 
metals. 

In summation, both computation series use the correct Dirac hypefine interaction. The 
essential difference is that in series 1 the consequences of spin-orbit coupling for the band 
behaviour at the Fermi energy and therefore in the DOS are disregarded. 

Contributions due to matrix elements (A15) with different angular momenta have been 
checked. The sd term H-12 is, for example, three orders of magnitude smaller than the 
s term H-I-,. If all such terms, which were omitted in the formulae in the appendix, 
are included, they contribute 2 x to the 
quadrupole relaxation in Sc. 

ORen the non-relativistic coupling constants are of interest for practical estimations. The 
following combinations of the H,, yield the usual coupling constants in the non-relativistic 
limit: 

to the magnetic relaxation and 5 x 

For non-s terms we define one uniform coupling constant for a given 1: 

The terms Hs and H, are the relativistic counterparts of the Fermi contact coupling HF and 
HAb in I, respectively. All these coupling constants are listed in table 2, because they are 
useful for the further analysis of measured data. The combinations (16) agree excellently 
for all metals with in I. 

4. Results and discussion 

This section gives a survey of the final results, which are subsequently discussed in view 
of the focal aspects. 

4.1. Survey of results and general trends 

The metals in question permit systematic investigations, because some of them have equal 
valences and therefore similar electronic structure. The main quantities that affect the 
relaxation rate are the hyperfine coupling constants and the partial DOS. 

The hyperfine coupling constants are shown in figure 1 .  To compress the data, we use 
the combination (16) of the two hyperfine constants corresponding to angular momentum 
I .  The quantity f i  does not enter T;' directly, but is suitable to give a qualitative survey 
of trends, and it has the advantage of providing the usual coupling constants in the non- 
relativistic l i t .  Figure 1 was restricted to p and d states, since they determine T;' in 
transition metals. The constants Hp and Hd increase from the 3d to the 4d period within 
one group by factors of about 2 and 1.3, and from the 4d to the 5d period by about 2.4 
and 1.9, respectively. Along a period, Hd increases more strongly than Hp for reasons of 
different local character of p and d states (Asada and Ter&ura 1981). 

The increase of the hyperfine coupling in one group is contrasted by the decrease of the 
DOS at the Fermi energy. To simplify matters, figure 2 shows only the total DOS. It shows 
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E 

- 
N I - r  
0 

0 
I 

i 

C 

Y Zr - - - - - -  Tc 
sc Ti 

Y Zr - - - - - -  Tc sc Ti 

Figure 1. Relativistic magnetic hyperline coupling constants H p  and Hd for p and d scates at 
the Fermi energy. 

Figure 2. Total DOS for HCP metals in a uniform scale, calculated by Ole complete self-consistent 
LW method. 

that the d bands get broader from 3d to 5d metals due to the overlap of the d valence states. 
Further element-specific features of the DOS me given in section 4.2. 

The total magnetic relaxation rate, divided by the squared gyromagnetic ratio (p/Z)*, 
shows that the increase of the hyperfine coupling is the decisive tendency from one period 
to the next, which is only slightly diminished by the band broadening (see figure 3). The 
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Figurr 3. Theoretical magnetic relaxation rates (TIT)& divided 
nuclear magnetons and I in units of E .  

, with p in 

alteration of the DOS at the Fermi energy recurs systematically in every period, a fact that 
also shows up in the relaxation rate. 

Tables 3 and 4 show the results of series 1, i.e. founded on the scalar-relativistic LMTO 
scheme with relativistically correct hyperfine coupling, and table 5 shows the results of the 
full Dirac calculations of series 2. The contribution of the core polarization (TIT);,' and 
the final results (TI T)Akdada are taken from I and II respectively. The measurements (TIT)$ 
were reviewed by Carter et al (1977). with the exception of Zr (Hioki er al 1975, I) and Re 
(Dimitropoulos et ai 1989). The very small p d  quadrupole contributions (A14) have been 
omitted in all these tables. (TIT)& poly is the rate averaged over all directions, i.e. for 
sin'p = 2/3. The quadrupole moment of 9rZr has been found in Biittgenbach etal (1978). 
enabling us to include its quadrupole relaxation in addition to I and II. 

At the beginning of the d series, relaxation by p states may compete with that of d 
states because of the stronger electron-nucleus coupling of p states. This is seen in other 
quantities of local character, for example the field gradient examinations of Blaha et ai 
(1988). The tables make it clear that the relative proportion of p relaxation increases in 
metals with equal valences, for example from Sc to Lu. because the p coupling is visible 
enhanced more strongly than the d coupling. This leads to the fact that, in the 5d metals, 
p relaxation is relatively large up to Re in the middle of the period. 

In the 5d series only measurements in Re by Dimitropoulos eta1 (1989) were available. 
The measured TI agrees fairly well with the numerical value, whereas the partition of 
the total relaxation rate into s and d contributions deviates from theory. Using an s-d 
two-band model, Dimitropoulos found the magnetic contributions (TIT);' = 1.48 and 
(TIT);' = 1.15, whilst our diagonal magnetic results for "'Re are (TIT);' = 0.42, 
(TIT);] = 0.78 and (TIT);' = 1.11 in units of (sK)-'. The main reasons for the 
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I I I I  
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overestimation of the s contribution by the experimental analysis lie in the hyperfine 
coupling and the model. The Hd,Djh value Used (Hd,Dih = 0.7 X loZT (1O6G)), aS 
estimated by Dimitropoulos from the free-atom (r3) value, is too low because enhancement 
rather than reduction should be used, as was stated by Asada et al (1981), referring to 
the renormalized atomic picture of Hodges et al (1972). In addition, relativistic effects 
enhance Ha, particularly in the 5d series. We found for a d state at the Fermi energy in 
Re Hd = 1.1 x 10zT. Furthermore, the p states cannot be neglected because in comparison 
with d states they increase in importance the higher the period number is. That is why the 
calculated relaxation rate by p electrons of magnetic plus quadmpolar origin is even larger 
than the rate of d electrons. 

Table 6. Comparison of relativistic corrections for s hyperfine wupiiag from band svucNre C, 
with by!& C,,w 

cs c,p, 
Sc 1.048 1.051 
Ti 1.056 1.056 
Y 1.183 1.192 
Zr 1.156 1.203 
Tc 1.181 1.241 

Pyyko et 01 (1973) calculated the relativistic correction factors for magnetic hyperfine 
interactions with hydrogen-like atomic functions analytically, and tabulated them for the 
outermost s, prp and p 3 ~  states up to Z = 100. In table 6 we compare the Pyy&o 
correction C,J, for s states with the quotient 

HS cs = 

from band structure, as has already been done in U. The good agreement between C, 
and C,,Q for 3d metals is due to the nearly Coulombic potential in the closer nuclear 
environment, which is significant for the s coupling (apart from the differences between the 
atomic and Fermi energies). In the 4d metals the slightly increased screening in this region 
causes slightly larger differences. 

4.2. Relativistic band eflects 

We now discuss band effects, which influence the number of electrons relaxing the nuclei. 
We deal with the elements Ti and Zr, which have four valence electrons. Both metals 

supply a good background as to the experimental and theoretical material. Jepsen examined 
the similarity of the electronic sfi-uctures. in particular the Fermi surfaces of Ti (Jepsen 
1975) and Zr, Uf (Jepsen et ol 1975). According to Jepsen the thiid, nearly unoccupied, 
band in Ti at the r A  line of the IBZ additionally intersects the Fermi energy (see figure 4) 
causing a change in the topology of the Fermi surface in comparison with 4d and 5d metals 
of the same column in the periodic table (21, W. Jepsen et a1 (1975) guessed that in Zr 
the band in question takes the same turn. Our theoretical T;' values and energy bands in 
series 1 and 2 are useful for evaluating these statements. 

Figure 4 contrasts the scalar-relativistic bands of Ti near the Fermi energy with the full 
relativistic ones. In figure 4(a), and in the work of Jepsen, which includes relativistic effects 
according to Andersen (1975), the hole Fermi surface parts r3h and A3h are disconnected. 
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NOS (STATES/ATOM) 

o) 0.05 

- 
t 
L O  
Y 

0 :  

-O'05r K M r A L M H  A L H K 10 20 30 
DOS (STATESIPITOM RY) 

NOS (STATES/ATOM) 

DOS (STATES/ATOM R Y )  

C )  

r M K r 
Figure 4. Cut of (a) scalar-relativistic and (b) relativistic band smctule for Ti near the Fermi 
energy. In (c) we compare the sections of the Fermi surface pa& r3h and A3h in the synuneuy 
planes according to Jepsen (1975) (full curves) with (a)  (full circles) and (b)  (open circles, 
broken curve). 

Here the first symbol (or the first two symbols in the case of an open surface) denote(s) the 
centre of the surface (or the open direction), followed by the number of the band in which 
it lies; h stands for the hole character. In non-relativistic calculations with the optimized 
LcAo method, developed by Eschrig, the third band dips more distinctly, namely by about 
7 mRy, into the occupied region (Eschrig 1988). In our calculations this band has, in the 
occupied part along the FA line near A, 65%d, 3 2 % ~  and 3 % ~  character, with increasing 
d character up to 82% at the point A. In both relativistic calculations of figure 4 this band 
is shifted up with respect to the Fermi energy, compared with Eschrig, because the d states 
are lowered less than s and p states by relativistic effects. The band considered is, in the 
region of intersection, further shifted by 3 mRy in the Dirac calculation (figure 4(&) against 
figure 4(a))  and steps out of the occupied conduction band. So the two closed hole surfaces 
r3h, A3h connect to a surface rA3h opened along the line rA. To get some evidence 
regarding the actual location of this band we exploit the strong dependence of T;' upon 
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the partial DOS. By the stepping out of the discussed band, the DOS decreases by about one 
state per Ry per atom. Heeding the abovementioned portions of 1 character it is clear that 
this concems mostly the d states. Fortunately, the d states supply the dominant contribution 
to T;’ in Ti and therefore the very subtle band shift influences are discemible only in the 
Ti d relaxation rate in tables 3 and 5. The results of series 2 approach the measured values 
very well (see table 5). Hence a comparison of the two series with experiment hints that the 
Fermi surface of ‘E contains an open r A 3 h  surface part and is topologically equivalent to 
that of Zr and Hf. Nevertheless, this discussion has only an exemplary character for similar 
cases. The differences in the rates are too small for a clear decision. 

NOS (STATES/ATOM) 

K M  ~ K M H  A L H K  io 20 
DOS (STATEWATOM RYI. 

NOS (STATESIATOMI 

C I  

- > e 
w 
- 

DOS (STATES/ATOM R Y )  

Figure 5. Stretched cut of the (a) scalar-rel&tivistic and (b) relativistic band smclure for Zr 
near the Fermi energy. In (e) we show the whole occupied region of the Dirae band svucture. 
containing the cut b )  between the broken lines. 

The corresponding band structure cuts for Zr are shown in figure 5. The band in 
discussion lies fully in the unoccupied region in the scalar-relativistic version of series 1 
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along I'A. The Fermi surface has a similar form to the rA3h hole surface of figure 4. 
Jepsen et al (1975) register d bands somewhat too low lying in comparison with measured 
electronic heat capacities and with de. Haas-van Alphen measurements (Everett 1972% b), 
suggesting a relative upward shift of the d bands by about IC-2OmRy in Zr. Though 
we cannot support the dissection of the rA3h hole surface proposed by them, we see the 
same general trend of the d states in our self-consistent calculations, namely that agreement 
with experiment would require a raising of the d bands against the Fermi energy by about 
3mRy. A hint about the relative shift of the Fermi energy is provided by a comparison 
of the experimental heat capacities with the calculated ones in table 7 in connection with 
figure 5. The heat capacity yup used in table 7 was measured by Heiniger et a[ (1966). In 
the theoretical coefficients yh enters only the calculated Dos. So the ratio yexp/yh = 1 + A  
represents the electron-phonon enhancement h of y .  The empirical values l+Amp are based 
on measured thermal properties entering McMillans formula (John 1983). A comparison 
of 1 + h and 1 + hemp shows that the calculated DOS are generally too large. If the Fermi 
energy decreases by only a few mRy with respect to the d bands, it slides into the spin-orbit 
split energy range of the third band near the point H in the IBZ, and the DOS is appreciably 
depressed. Because of this distinct experimental indication we computed T;' on trial at the 
energy E F - ~  mRy. In doing so T;' falls short of the measured value, and the enhancement 
of y by electron-phonon interactions is overestimated. A relative band shift of about 3 mRy 
explains the experimental T;' value. So there is considerable evidence that the spin-orbit 
splitting is responsible for the large error in Asada and in our Zr relaxation rate. 

Table 7. Total 00s N ( E p ) ,  tempemme coefficient y of the heat capacity C = y T  and relaxation 
rate (TI T)- l  of Zr. 

Jepsen et a1 This work This work YCiP 
E = EF E = EF -5mRy 

N ( E d  (statedatom Ry) 13.1 12.84 8.48 
yth (mlmol-I K2) 2.21 2.72 1.41 2.18 

Emp. enhancement ( I  +Aemp) 1.45 1.45 1.45 
(TIT)-' (sK)-' 0.0648 0.0295 
(TIT)& (sK)-' 0.035 tt 0.005 

Y G & ~  = (1 + A )  I .7.2 1.25 1.89 

4.3. Quadrupole scattering 

Finally, we point out here some results on nuclear quadrupole relaxation. 
This mechanism is brought about by fluctuating field gradients of scattering conduction 

electrons. As the nuclear spin levels are about seven orders of magnitude lower than 
electronic energies the electrons scatter quasielastically, and consequently only electrons 
at the Fermi energy take part. Therefore one difference between the calculation of static 
gradients of the crystal field and the determination of quadrupolar relaxation is that, in the 
former case, all band electrons contribute and in the latter case only electrons near the Fermi 
energy contribute. The estimation of field gradients has a long tradition in the Sternheimer 
anti-shielding concept {Sternheimer 1950). The anti-shielding theory, mostly applied to 
insulators, proceeded originally from the assumption that the dominant contribution to the 
gradient is also induced into the local atomic environment from the surrounding lattice in 
metals (Watson et a1 1965). From the present viewpoint it appears to be a more local 
phenomenon (Kaufman and Vianden 1979) in most metallic systems. The decisive reversal 
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was initiated by the graphical confrontation of calculated lattice contributions against the 
(essentially) measured electronic contributions, as given by the difference between the 
measured value and lattice contribution. Using all available data this revealed the so-called 
universal correlation (Raghavan et al 1975, Raghavan 1976). Crudely stated it proved that, 
relatively independently of the particular metal, the measured total field gradient is about 
twice the amount of the calculated non-local lattice contribution, which has opposite sign: 

K F3 2. (18) 

So the local electronic site contribution is three times that from interatomic Sternheimer 
polarization, described by the anti-shielding factor ym. Recent full-potential calculations of 
Blaha et nl (1988) intensify this fact. According to them, lamce terms contribute only 10- 
1.5%. though a direct comparison with anti-shielding calculations is not possible. The local 
character of the field gradient lends support to the fact that the quadrupole coupling is mainly 
covered by (IO). The quadrupolar spin-lattice relaxation possesses some relationships with 
the field gradients in HCP metals. ?he dominance of the p contributions is confirmed for 
the quadrupole rates in all metals, except for Os. In our calculations the (p1,2 - ~ 3 1 ~ )  term 
contributes dominantly. 

Re is the only measured metal in which the quadrupole relaxation is at least comparable 
with the magnetic relaxation. The good agreement between theory and experiment supports 
the usability of the calculations of qx.. The recovery of the nuclear magnetization in 
Re shows a multi-exponential behaviour, due to the considerable electrostatic quadrupole 
splitting of the nuclear levels. The measured E in Re was determined by a fit of the 
magnetization curve to the theoretical behaviour for pure magnetic relaxation of the &$ 
transition (in NMR) and the ++, zk$ transition (in NQR) for I = $. The portion of quadrupole 
relaxation is, according to table 8, about 20%. As may be seen in table 4, the agreement 
between theory and experiment is excellent. Lu and Hf possess very slrong quadrupole 
interactions (see for example table 8). Because of the strong quadrupolar line broadening it 
appears doubtful that WNQR spectra can be obtained in pure metallic Lu and Hf. Os could 
be suitable for investigating quadrupole relaxation if it allows saturation of the quadrupolar 
broadened lines. One of the Os isotopes has a spin I = i. Since the other isotope is 
purely magnetically relaxed ( I  = $), the quadrupole relaxation may be directly extracted. 
Unfortunately, the latter isotope has a very small natural abundance. 

Often the ratio of quadrupole and magnetic spin-lattice relaxation is of interest. Obata 
(1964) presented an estimation of the ratio between the quadrupole and the magnetic dipolar 
relaxation rate. Proceeding on the assumption that the nuclear system is relaxed purely either 
by p or by d electrons, one finds in the spherical case the modified Obata ratio for the total 
magnetic relaxation 

lau q n  = -K(1 - Ym)qZ2: 

(19) 

with the nuclear magnetic moment p in units of nuclear magnetons and Q in barns; (T,-')!,,% 
is the sum of the dipole and orbital relaxation rate by states of angular momentum I .  Table 8 
contains the ratio (T;')q/(T;l).L.p from the numerical results and the ratios (19) with rp 
and ra. At the beginning of each period the numerical ratios are close to the ratio (19) using 
rp, while the results in the middle of the period reflect mainly d relaxation. 
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Table 8. Nuclear data, ratios between the quadrupolar and magnetic relaxation me 
(T;')sl(T;l)me using the numerical results, and ratios (Tc')i/(T;')hag from (19). 

I. 

g'li -0.7870 0.29 512 0.056 0.11 0.033 
gIi -1.1021 0.24 7/2 0.011 0.033 0.0096 

- - :;Y -0.1368 - 1R - 
zZ5 -1.298 - O X b  512 0.018 0.022 0.0064 
ETc 5.6573 0.3 9/2 0.00062 0.0018 0.00051 

;:6L" 3.15 8.a 1 3.0 3.5 1. 
+i7Hf 0.61 3.0 7/2 13. 16.9 4.9 

:!'Re 3,1437 2.7 5/2 0.28 0.62 0.18 

$:'Os 0.06374 - 1/2 - 
4i90s 0.6506 0.8 3D 0.59 1 9 0.55 

+75L" 2.21 5.6 712 3.8 4.5 1.3 

:19Hf -0.47 3.0 9/2 19. 26. 7.4 

$!'Re 3.1760 2.6 512 0.25 0.56 0.16 
- - 

a Caner el nl (1977). 
Biittgenbach ef nl (1978). 

These results could be useful in the case of considerable static quadrupolar interaction 
in metals and alloys causing a multi-exponential recovery. In this case the ratio of the 
electronic transition probabilities Wmg to W, and W, (the quadrupolar electronic transition 
probability for Am = 1 and Am = 2, respectively) is needed for the full relaxation matrix. 
Under the assumption Wl e WZ = W,, which holds quite well in metals, equation (19) 
provides (apart from a prefactor) the ratio Wmg/ W ~ ( Z ,  if an appropriate value r between rp 
and rd is chosen. Some values for metals are given in the fifth column in table 8. 

5. Conclusions 

In conclusion, we have presented explicit formulae for the nuclear spin-lattice relaxation in 
HCP metals based on Dirac theory and symmetrized spin-orbit functions. We applied them 
to 3d, 4d and 5d metals using the self-consistent scalar-relativistic and full-relativistic LMm 
method. It was shown that the amount of p relaxation increases from the 3d series to the 5d 
series within one group. This must be considered when applying 4 - b a n d  models. Similarly 
to Asada and Terakura, we found in Zr a relaxation rate that is twice the experimental one. 
In addition we utilized other elechonic structure data to show that there is strong evidence 
that this deviation is due to spin-orbit splitting near the Fermi energy. The Fermi surface 
of Ti was discussed in connection with the relaxation rate. In Re we compared the partition 
of the total relaxation rate into contributions from different angular momenta with an s-d- 
band-model analysis. The extension of the Obata ratio to the complete magnetic scattering 
including orbital interaction was used to estimate the amount of quadrupole scattering. The 
comparison of these estimates with the numerical values show that the computed values 
tend more to the ratio for pure p relaxation at the beginning of each period. and to the ratio 
for d scattering in the centre of a period. 
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Appendix. Expressions for the sph-lattice relaxation rate 

'Ihe relaxation rates are classified with respect to the orbital angular momenta. In our 
convention the diagonal relaxation rates are designated by one index and the off-diagonal 
rates are designated by two. The magnetic relaxation rate then contains the following 
members: 

In the following formulae j? is the angle between the crystal c axis and the external magnetic 
field. For the diagonal terms we get 
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We are lead to similar formulae for the quadrupole relaxation: 
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